首页> 外文OA文献 >Incorporating Global Visual Features into Attention-Based Neural Machine Translation
【2h】

Incorporating Global Visual Features into Attention-Based Neural Machine Translation

机译:将全局视觉特征纳入基于注意力的神经机   翻译

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce multi-modal, attention-based neural machine translation (NMT)models which incorporate visual features into different parts of both theencoder and the decoder. We utilise global image features extracted using apre-trained convolutional neural network and incorporate them (i) as words inthe source sentence, (ii) to initialise the encoder hidden state, and (iii) asadditional data to initialise the decoder hidden state. In our experiments, weevaluate how these different strategies to incorporate global image featurescompare and which ones perform best. We also study the impact that addingsynthetic multi-modal, multilingual data brings and find that the additionaldata have a positive impact on multi-modal models. We report newstate-of-the-art results and our best models also significantly improve on acomparable phrase-based Statistical MT (PBSMT) model trained on the Multi30kdata set according to all metrics evaluated. To the best of our knowledge, itis the first time a purely neural model significantly improves over a PBSMTmodel on all metrics evaluated on this data set.
机译:我们介绍了多模式,基于注意力的神经机器翻译(NMT)模型,该模型将视觉功能纳入了编码器和解码器的不同部分。我们利用预先训练的卷积神经网络提取的全局图像特征,并将它们(i)作为源句子中的单词合并,(ii)初始化编码器隐藏状态,(iii)作为附加数据初始化解码器隐藏状态。在我们的实验中,我们评估了整合全球图像特征的这些不同策略如何比较以及哪种策略效果最佳。我们还研究了添加合成的多模式,多语言数据带来的影响,并发现附加数据对多模式模型具有积极影响。我们报告了最新的结果,我们的最佳模型也比根据评估的所有指标在Multi30k数据集上训练的可比较的基于短语的统计MT(PBSMT)模型显着改善。据我们所知,在此数据集上评估的所有指标上,纯神经模型首次都比PBSMT模型有了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号